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ABSTRACT

The history and present status (1965) of multiprocess-
ing, multiprogramming, and timesharing are reviewed. It
is concluded that, despite their diverse histories, these
techniques are destined to be intertwined. Although the
mechanicalproblems in operating systems that exploit these
techniques have largely been solved and the difficult memory
allocation problem is on the brink of solution, the important
question of optimum operating system strategy in initiating,
suspending, and terminating jobs is largely unexplored.
Suggestions are made concerning models which might be
suitable for both analytic and Monte-Carlo approaches to
the optimization of operating system strategy and to the
selection of optimum hardware mixes. An extensive bibli-
ography is included.

PROBLEM STATUS

This is an interim report; work on this problem is
continuing.
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MULTIPROCESSOR OPERATING SYSTEMS

INTRODUCTION

This report surveys the current state of the art in operating systems for multi-
processor digital computers; it provides a historical perspective to the current interest
in this field, and indicates some of the unsolved problems in the optimization of such
systems. In the definition of the term "multiprocessor" we exclude such computers as
the Honeywell H-800 (5) and its successors which are single-processor computers with
special features to facilitate multiprogramming. We also exclude systems, such as the
current Project MAC (8) configuration, which are multiple-access multiprogrammed
systems, although we shall find a considerable body of problems common to multipro-
grammed and multiprocessor systems.

We shall define multiprocessors as systems containing more than one identical
arithmetic/control module, each of which can associate with random access memory and
input/output (i/o) facilities to form a stored-program computer. The requirement that
each arithmetic/control module (hereinafter called computer module) be an autonomous
computer when equipped with memory and i/o eliminates from our definition such sys-
tems as the Control Data Corporation CDC 6600 (34) which contain multiple but highly
specialized arithmetic units each of which is capable of executing only a fraction of the
instruction repertoire of the system. The requirement that the computer modules be
identical eliminates the many "computer with on-line satellite" systems now extant.
Finally, we shall exclude from consideration such systems as the SOLOMON (14,28)
computer which contain a large number of identical but not autonomous computer modules
and are intended for the parallel solution of different parts of a single physical system.

We also require some criteria for distinguishing between multiprocessor systems
and systems consisting of two or more conventional "computers" (i.e., computer mod-
ules plus memory and i/o) coupled either through their i/o facilities or through common
memory. For this purpose we characterize a multiprocessor system as one in which all
the main memory (i.e., directly addressable memory) is totally shared among all com-
puter modules (except perhaps for a relatively small amount dedicated to computer mod-
ule internal housekeeping functions) and in which any program can be executed with equal
facility by any computer module.

Under these definitions there is now only one multiprocessor in use today, the AN/
GYK-3(V) (Burroughs D-825) (1,2), although there have been many such systems an-
nounced within the last year which will presumably be operational in the next year or two.
Among this latter group are versions of the IBM System 360 (19), the CDC 3870 (31), the
General Electric Company GE-635 (20), and the Sperry Rand Corp. UNIVAC 1108 (29).
Although experience with the AN/GYK-3(V) has overcome the initial skepticism as to
whether such multiprocessors could function at all, little is known about the features an
operating system must possess in order to allow the multiprocessor to function efficiently.

Note: This report was originally submitted to the Faculty of Electrical Engineering at
the Graduate School of the University of Maryland in October 1965 in partial fulfillment
of the requirements for the Ph.D. degree, while the author held a Thomas A. Edison
Memorial Graduate Training Fellowship. It is being issued as an NRL report at this
time because of the continuing growth in interest in and utilization of multiprocessors.
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HISTORICAL BACKGROUND

Multiprocessing

The original interest in multiprocessing derives from the use of digital computers
as information processing elements in military applications such as command and con-
trol, missile tracking and guidance, and tactical data processing. For many of these
applications hardware malfunction would cause intolerable effects, and means were sought
to reduce the probability of failure. Even the most stringent application of conventional
quality-control measures often leaves an unacceptably high failure rate in high-component-
count devices such as digital computers; redundancy techniques were therefore explored.

There are many levels at which redundancy techniques can be applied to digital com-
puters. The most straightforward approach is to replicate at a low level of circuit com-
plexity, either at the component level or at the single function level (e.g., gate or flip-
flop). For example, if each diode is replaced by four diodes in series-parallel, the
combination is invulnerable to any single diode failure, and the probability of two diodes
out of four failing is much lower than the probability of a single diode failure. This tech-
nique has the disadvantage of greatly increasing the number of components in the com-
puter and, therefore, the rate of component failure. However, it is an acceptable solution
for situations such as missile guidance where the mission time is short and the computer
is either expended in the mission or has long servicing and checkout periods between
missions, when failed components can be identified and replaced.

A further disadvantage of redundancy at the lowest level is the increase in the num-
ber of component interconnections. The number of interconnections critical to system
operation may well be higher in the redundant than in the simple system.

Redundancy at an intermediate level is usually implemented by checking and occa-
sionally by correcting the arithmetic and transfer operations. While simple parity
checking has become standard practice in commercial and scientific applications, the
detected error may well be no less catastrophic than the undetected error to the real-
time military application. Error correction, on the other hand, often involves substantial
increases in component count. For example, meaningful voting requires the voting cir-
cuitry and three independent subassemblies for casting ballots and leads to a nearly
fourfold increase in circuit complexity (18).

In summary, redundancy on the low or intermediate levels is most applicable when
the basic computing requirement is modest, for it is in these situations that the increase
in circuit complexity is tolerable. These situations would often require the development
of a custom computer, for environmental or other reasons, and the redundancy tech-
niques can be applied during this design. Furthermore, such computers are often single-
function, and error detection and correction techniques specialized to the computation
being performed can be employed.

When the computing requirement is high, however, these techniques are less attrac-
tive. The expense of quadruplicating a large computer is unattractive as is the develop-
ment cost of both the hardware and the software for such a system. The usual approach
during the late 1950's and early 1960's was to employ a state-of-the-art large-scale
computer (usually an IBM 704 early in this time period, or an IBM 7090 later) and to
couple pairs of these computers to the system. This was a satisfactory solution, at least
for ground environments, since well debugged computers with extensive software libraries
were available at no additional development cost. It was assumed that the internal error
detection features of these computers were sufficiently effective so that one could be kept
on line, the other could perform internal diagnostics, and they could be switched if one
failed.
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A complication occurs in updating the memory of the standby computer; later sys-
tems kept the standby computer in a shadow" mode in which it "eavesdropped" on the
inputs of the prime computer, produced the same outputs as the prime computer (although
these outputs went nowhere), and was always ready to assume the functions of the prime
computer. In principle the outputs of the prime and the shadow computers could be com-
pared, but unless a third computer was available to resolve disagreements this would add
little to the internal error detection capabilities of the computers. Sometimes a "cross-
talk" channel would be provided between the computers (10).

These systems often had such peripherals as tapes and drums. In a few systems
these were not duplicated but were connectable to either computer with a switch. The
total complement of tapes would be higher than the minimum necessary for operation, but
the redundancy was less than the 100 percent of the computers.

The most refined form of such systems is exemplified by a system (13) in which a
computer was deliberately chosen that was too slow to perform the total computational
requirement. Instead, a number of computers were interconnected with the peripherals
through a switch and the problem was segmented so it could be performed by any three
computers. Five computers were installed to provide a high probability of always having
three computers available with a computer redundancy of only 67 percent. Other systems
of this type have been described (4).

A few years before this system was installed, however, it became clear to a number
of investigators that the principle of the "switch" and a redundancy of less than 100 per-
cent could be carried into the design of the computer itself. It would be necessary to
segregate the "computer" into computer modules, memory modules, and i/o modules and
allow them to interact freely through a high-speed switch as well as allow the i/o modules
to interact with the peripheral complement through another switch. By matching the
power of the modules to the computational task in such a way that several modules of
each type would be required to fulfill the task, high reliability could be assured at a cost
of only modest redundancy by providing one or two additional modules of each type.

Two of these proposals circulating in 1960 were selected by the Government for de-
velopment. The first was a proposal by the Ramo-Wooldridge Corporation for a machine
dubbed the RW-400 (23-25) and was supported by the Air Force; the second was a pro-
posal by the Burroughs Corporation for a machine dubbed the D-825 and was supported
by the Navy and now bears the military nomenclature AN/GYK-3(V).

Although some RW-400 hardware was built, the development was never completed.
Chief among the weaknesses of the design was a centralized switch and a special control
processor to control it. Failures in the switch and the control processor would lead to
system failure, and the control processor contained a substantial number of components.

In the AN/GYK-3(V), however, the "switch" was distributed among the memory
modules. Each memory module was equipped with five busses over which requests could
be made and which contained the necessary circuitry to queue simultaneous requests.
Each computer module (normally the system accommodated three) was connected to a
bus on each memory module. A subset of i/o modules was connected to a switch which
was connected to a bus on each memory module, and a second subsystem of i/o modules
was connected to another switch connected to the fifth memory bus. Each i/o module
was connected to all peripherals through its own switch. Thus most component failures
would disable only one module, although a few failures in an i/o bus could disable half the
i/o modules. The computer modules were equipped with relative address registers to
facilitate multiprogramming and with a small thin-film memory for internal register
housekeeping. Typical installations have had about 40 percent module redundancy.
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Multiprogramming

At this point it would be appropriate to interrupt the history of multiprocessing to
consider the history of multiprogramming. The earliest digital computers were equipped
with on-line i/o equipment (punched paper tape and punched card) through which programs
and data were read and outputs punched. Later, high speed printers were available for
on-line operation. Nevertheless, the speed of computers quickly outstripped the speed
of peripherals, and users found their expensive computers idle a substantial proportion
of the time while waiting for i/o operations. Three attacks have been made on this
problem.

The first minimizes i/o time by increasing the speed of i/o operations. Because the
speed of printers, card readers, etc., cannot be increased without limit, it has become
common practice to convert the input information to magnetic tape which the computer
reads, and to have the computer write its outputs on magnetic tape which is later used to
drive a printer.

A second approach is to perform these conversions under the control of a satellite
computer which is used to control the peripherals and to write the input tapes and read
the output tapes. Direct core-to-core communication between the main computer and the
satellite computer via i/o channels is also possible.

The third approach involves the provision of sufficient control in the i/o channels so
that they need a minimum of supervision by the computer. In this way the need for a
satellite is eliminated. It is this third approach that naturally leads to multiprogramming,
which may be defined as having several independent programs in a partially run or a
ready-to-run state (usually, but not invariably in main memory) and cycling the compu-
tational service from one program to another in an attempt to insure that the computa-
tional facilities of the system are never idle.

Multiprogramming may be accomplished entirely by hardware, almost entirely by
software, or by intermediate mixes. One of the early attempts to provide multiprogram-
ming by hardware was the Honeywell H-800 (5,21,22,25). This machine provided special
registers to store the state (e.g., the location of the next instruction) of up to eight pro-
grams. The control section operated in a fixed cycle, executing one instruction from
each program and then going to the next program. If a program was performing an i/o
operation, it would be skipped in every cycle until it was ready to resume execution.
Since the H-800 was a three-address machine, most instructions were self-contained and
the "housekeeping" in transferring between programs was tolerable.

One disadvantage of this type of multiprogramming is that, when no i/o operations
are being performed, each program is being executed at one-eighth the rate it would be
executed if it were the sole occupant of the system. In addition to intolerably long com-
pletion times for programs of high intrinsic priority (e.g., a real-time program con-
trolling an external device and having a high ratio of computation to i/o), this also results
in each program residing in core for a long time. While it is desirable that there be
more than one program in core simultaneously to assure a high probability of there being
a program not performing i/o and therefore capable of absorbing the attentions of the
computational facility, the scheme employed in the H-800 tends to be prodigal with core
memory - a resource often costing a substantial fraction of the entire system.

Multiprogramming can also be performed primarily by software. The minimum
hardware requirements are a good interrupt system and perahps a set of "relocation" or
"base" registers. Several programs will occupy core at the same time; since the run-
time environment is unknown at compile time, they must be compiled and filed in
"relocatable-binary" form. At run time the operating system loads the program into

available memory and either modifies the program addresses or, preferably, inserts the
address of loading into a relocation register.

4



NAVAL RESEARCH LABORATORY

The usual strategy of such a multiprocessing system is to require that all programs
perform i/o operations by making macro calls on the operating system. The operating
system institutes the i/o operation and turns over control to another program. When the
i/o operation is complete, the operating system is notified by an interrupt and has the
option of turning control back to the first program or permitting the second program to
continue until its next i/o operation. Unnecessary transfers of control are avoided not
only because core can be used economically and programs can be completed in minimum
total time but also because substantial processor time is required for the housekeeping
associated with the transfer. When a program is completed (or releases a substantial
block of core space), the operating system selects a program from its file of programs
to be run, loads it in core, and notes the necessary relocation information.

Some operating systems perform a very limited amount of multiprogramming while
primarily relying on other techniques to keep the processor busy. Typically only one
program is active at a time, with i/o performed to a drum or other high transfer rate
device, but the operating system must devote processor time to reading outputs of the
last program from drum to core, formatting them, and transmitting them to conventional
peripherals; it must also devote processor time to reading input devices for the next
program, formatting the data, and transferring the images to the drum.

Timesharing

The third thread that must be considered, which has generated much interest of late,
is timesharing. A timesharing system will typically have a substantial number of local
or remote terminals, each of which is capable of independently generating requests for
computer service. These terminals may be mechanical, such as multiple computer-
controlled machine tools or the communication circuits of a message store-and-forward
switching center, or they may be human operated. In the latter case the scope of com-
puter service required may be quite narrow as it is for an airline reservation or inven-
tory control system, where the terminals are simply remote peripherals transmitting
data to and receiving data from a conventional computer program, or the service re-
quested may be the full resources of the computer (as delegated through the operating
system) in the case of a multiple user on-line program debugging system.

The common characteristics of timesharing systems are: computer service is re-
quired by terminals over periods much longer than the processor time utilized during the
period, and the system must be available for servicing each user's request with a waiting
time much shorter than the period of connection.

The simplest timesharing systems involve only a single program which provides
appropriate responses to the terminals. An example would be the Control Data Corpora-
tion "Remote Calculator" (31). The calculator itself is simply a keyboard and a set of
indicators. The calculator is given characteristics intermediate between those of a desk
calculator and a stored-program computer by the program within the central computer.
It is a relatively simple matter to provide sufficient space within this program to accom-
modate numerous remote calculators. It should be noted that all transmissions from the
remote calculator to the computer, whether they are considered data or instructions by
the user of the calculator, are data to the computer program which interprets them. Thus
the user has no knowledge of the computer resources activating his calculator and has no
way to exercise them, except within the vocabulary acceptable to the program in the cen-
tral computer.

The IBM "Mohansic System" (19) lies at the other extreme of the timesharing spec-
trum. In this system each user "owns" the entire system, except for the common oper-
ating system which handles i/o and owns a disc. When a user requests service, a disc-
to-core transfer reestablishes "his" system; when his request has been completely
serviced, a core-to-disc transfer makes the machine available to some other user.
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One of the best known timesharing systems, Project MAC (8) currently uses an IBM
7094 computer with certain modifications to afford relocation capabilities. Both types of
service are provided to the terminals. Interpretive systems provide highly specialized
problem-oriented languages to terminals. Other terminals may deal in the conventional
machine-oriented business of compile requests, run requests, etc. Similar systems are
described elsewhere (26,27).

COMMONALITY AND CONTRASTS

Multiprocessing and Multiprogramming

It is obvious that a multiprogramming system need not be a multiprocessing system;
the question of whether a multiprocessing system need be a multiprogramming system
requires some discussion.

It should be pointed out that if the only incentive for choosing a multiprocessor is
reliability at modest redundancy, and if the computational load is absolutely constant so
that there is no desire to make use of the redundant modules whose availability cannot be
assured, there is no reason to insist that a multiprocessor have multiprogramming
capabilities.

As an example we may consider an Air Force application of the AN/GYK-3(V) to an
air defense problem (30). The total equipment complement consists of two computer
modules, six memory modules, and three i/o modules. Of these, one module of each
type is reserved to form a "confidence system," whereas the operational program is
written as a simple, nonmultiprocessing, nonmultiprogramming system and is constrained
to run in the remaining modules while diagnostic programs run in the confidence system.
In the case of hardware malfunction the scope of the diagnostic program is increased to
examine all modules; the offending module is replaced by a corresponding module from
the confidence system while the offending module is being repaired.

This system can be criticized on the grounds that there is no way the operational
program can make use of the redundant modules. The criticism is defended against on
the grounds that the operational program has no desirable but nonessential components
appropriate for performance by redundant modules; therefore, it is not worthwhile to
solve the problems of memory allocation, etc., inherent in a multiprogramming system.
Nevertheless, it is understood that the Air Force (37) has recently expressed interest in
providing a multiprogramming capability in these systems.

Actually, it was always intended that the AN/GYK-3(V) be used as a multiprogrammed
system, even in single computer module configurations, and considerable attention was
paid in the hardware design. An "Automatic Operating and Scheduling Program" (AOSP)
was proposed concurrently with the hardware proposal, and work was initiated by
Burroughs Corporation personnel (33). In recent years this work has been supported by
NRL both in connection with a particular Navy application and for the advancement of the
operating system art.

At this point we shall enumerate some of the features of the AOSP and attempt to
justify them as required for multiprocessing, multiprogramming, or both.

1. The operating system must be executable by any computer module out of any
memory module(s). This requirement derives from the necessity of maintaining the
survival potential of a multiprocessor; consequently it becomes impossible to dedicate
particular modules to the execution of the operating system. This leads to the concept,
first expressed by Wilkinson (36), that, in a multiprocessor, programs (including the
operating system) are not executed by computers but control whatever computers and
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other resources are assigned to the execution. In a multiprogrammed system this is not
an absolute requirement. However, it is often convenient to divide the operating system
into a "resident" which always occupies a fixed area in core and dependent subroutines
which are called when required and are allocated available memory space in the same
fashion as user programs.

2. A user program must be executable out of any memory. This requirement is
common to both multiprocessing and multiprogramming, although it is more stringent in
connection with multiprogramming. In strict multiprocessing it is only necessary to be
able to "rename" memory modules when a redundant module is substituted for an unserv-
iceable module. In multiprogramming, on'the other hand, it is impossible to predict at
*ompile time what other programs will be in core at run time and hence what core will
be available to a given program. Therefore, each program must be executable out of any
available core memory.

3. A distinction must be maintained between PA's and DA's. A PA (program area)
is a pure procedure, i.e., the string of instructions that control a computer. A DA (data
area) is the data and working locations involved in the particular execution of a program.
It is desirable to maintain this distinction in a multiprocessor, enabling a single PA to
control several computer modules which are performing identical processes on distinct
DA's. Similarly, in a multiprogrammed system, it is desirable that several programs
running "simultaneously" (i.e., in an interleaved fashion) need not require separate core
allocated to private copies of subroutines common to more than one program. Further-
more, this distinction facilitates recursive programming and reentrant subroutines.

Some additional terminology will be introduced at this point. Henceforth we shall
use the term "program" to refer to the combination of a PA and a DA and the phrase
"incarnation of a program" to refer to the combination of the PA and one of several DA's.
SS (simple subroutine) will denote a procedure that has no DA, i.e., one which has its
immutable constants integrated with its PA and either confines its writing to the registers
of the computer it is controlling or to the DA of the program that called it. DO (data
object) will denote an object external to a program but which may be read or modified by
one or more programs. The term "object" will be used to refer to a PA, DA, SS, or DO.
The term "job" will be used to refer to a task assigned to the system from the external
world. A job always involves the execution of at least one program and may involve mul-
tiple incarnations of that program and linkage to other objects.

4. The objects involved in the performance of a job must be independently allocatable.
While the initiation of a job will involve the specification of one program and perhaps some
parameters, that program may refer to other objects and also require replication of its
own DA. It is essential that in collecting the necessary objects the operating system be
able to use those objects previously allocated into core without restructuring the memory.
It is desirable that the process continue beyond load time through run time; i.e., that it
be possible for a running incarnation of a program to request that the operating system
link to it an object that may or may not be already in core and to inform the operating
system that it no longer requires an external object. This capability leads to the more
efficient use of core memory and is required for efficient multiprogramming. Maintain-
ing this capability in multiprocessing complicates the system, but it is a prerequisite for
the use of multiple computers on a single job.

5. If the operating system diverts a computer module from the execution of some
incarnation of a program, it must be prepared to restore control to that program either
with external objects unchanged and unmoved or with the links in the DA of the diverted
incarnation (and the links of other suspended DA's utilizing such objects) suitably modi-
fied to point at the new locations of such objects. This is a fundamental requirement in
multiprogramming and even in some conventional operating systems which do not allow
"user" multiprogramming but multiprogram utility functions along with a single user job.
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Naturally it behooves the hardware designer to make the process of restoring control and
links as efficient as possible. It should be noted that the AOSP employs the rule of not
disturbing the memory allocation or the links of a suspended incarnation of a program
and its external objects and thus sidesteps the difficult problem of dynamic reallocation
(15) of memory at the expense of not having the allocated memory available for other
tasks during the period of suspension. More recent computer designs have adopted such
techniques as mixed hardware/software attachment registers, associative allocation
memories, dynamic paging, to reduce the necessity of performing dynamic reallocation.
Multiprocessing complicates the situation somewhat, since objects referred to by the
suspended incarnation may also be required by some other incarnation of the same or a
different program still undergoing execution by other computer modules.

6. If a running incarnation relinquishes execution to await some external condition
(e.g., passage of time, completion of i/o, external interrupt, a computation by another
incarnation, etc.), the operating system must reestablish execution when the specified
criteria have been met with external objects, and links must be preserved. This require-
ment is contained within the previous one, but the distinction is in the case of voluntary
relinquishment when it may be reasonable to require that the user program perform
some administrative work to prepare for its reestablishment.

7. A job must be capable of initiation in any computer module, and a suspended job
must be capable of reinitiation in any computer module. This is a fundamental require-
ment of multiprocessing.

8. The operating system must perform i/o operations for users and inform users
as to the status of these operations. The decoupling of i/o is a fundamental requirement
of multiprogramming, as the suspension of a job while i/o is taking place and the dedica-
tion of computational resources to another job during this period is the primary motiva-
tion of multiprogramming. It should be noted that two or more jobs, segments of which
are being executed alternatively, may demand the use of the same physical peripheral
device, and the operating system must be capable of satisfying the needs or both. In a
multiprocessing system, two or more jobs actually being executed concurrently may
demand the same peripheral device.

9. The operating system must schedule the execution of tasks, taking note of in-
trinsic priorities, queue status, conflicts between resources required for different tasks,
and resources that can efficiently be shared among tasks. This is a fundamental require-
ment of any worthwhile multiprogramming system; yet it remains a neglected require-
ment. Despite the "S" in the acronym "AOSP," the scheduling in that system remains
primitive, taking little cognizance of potential conflicts before they occur, and makes no
effort to identify and facilitate resource sharing. It is the investigation of means to com-
bat this deficiency that is the motivation for the research proposed. The deficiency is
more serious in multiprocessing, as the potentials for cooperative resource use (e.g.,
objects used in common by two or more jobs running concurrently) are higher.

Multiprocessing and Timesharing

The relation between multiprocessing and timesharing may at first seem rather
tenuous, especially when it is considered that a number of reasonably effective time-
sharing systems now exist and none involve multiprocessing. Nevertheless, one well-
known system (Project MAC) has recently announced plans to use a multiprocessing
General Electric GE-635 computer system, and it seems safe to predict that, if time-
sharing proves itself economically advantageous, systems designed for timesharing (as
distinguished from conventional systems modified to be feasibility demonstrators of, or
test beds for, timesharing) will be multiprocessors.

8



NAVAL RESEARCH LABORATORY

The primary motivation for the incorporation of multiprocessors into timesharing
systems will be identical to that which led to the development of multiprocessors for
incorporation into military systems - reliability. In a batch-processing closed-shop
computing center, system failure is tolerable provided that repairs are accomplished
with sufficient speed to prevent substantial increments to the normal turnaround time of
the installation, and provided that total availability is sufficiently high to permit the
processing of the workload. In a timesharing system, on the other hand, there are many
users who expect service in times (microseconds to seconds) commensurate with their
requirements and who will be intolerant of system unavailability.

Fundamentally, timesharing is attractive for the same reasons that public utilities
represent an efficient method of providing electrical power or telephone communica-
tions - it is more economical to share large central plants than to provide each customer
with an electric generator or a radio transceiver capable of meeting his peak demands.
On the other hand, the public utility must have redundant generators, alternate long-haul
trunks, etc., to minimize the probability of complete system failure. Furthermore, the
system must be so organized that a large fraction of the plant is usually performing
economically useful functions, and it must be possible to rapidly reconfigure the network
to meet instantaneous demands. These are precisely the arguments that lead to the de-
sign of multiprocessors with flexible multiprogramming capabilities.

An example of the close connection between the multiprocessor and the public utility
may be found in the new A.T. & T. ESS (Electronic Switching System) (16). Viewed from
the outside, this system is similar in function to the conventional telephone system with
some improvements in flexibility and presumably substantial improvements in economy
and reliability. Viewed from the inside, however, this system resembles a multiproc-
essor with many flexibly interconnected computational and memory modules. Indeed, the
designers of this system have referred to it as an "immortal computer," and, if not for
its limited instruction repertoire and single function (although not single program), we
might find this system falling within the central area of interest of this report.

The other motivation for the incorporation of multiprocessors into timesharing sys-
tems is responsiveness to peak demands. While one could conceive of a very fast single
computer module that could handle the peak computational requirement by sequencing
through the active programs, the overhead of this sequencing might well be substantial;
it would appear more attractive to provide a multiplicity of processors, each handling
fewer requirements, with several combined on a substantial problem requiring rapid
service.

Multiprogramming and Timesharing

It seems evident that a timesharing system should be a multiprogramming system,
although a few counterexamples have already been given. should be recognized that
the timesharing system allows a wider range of multiprogramming techniques than does
the batch-programmed multiprogrammed system.

In the batch-programmed multiprogramming system, the main incentive to switch
program control is to find useful work for the computer module during times when the
program is awaiting i/o operations. In the most elementary multiprogramming systems,
this work is limited to jobs preassigned to the operating system itself; in more general
systems, other user programs may be considered. However, the number and type of i/o
operations that can be done before it is appropriate to resume the suspended program is
quite limited; an attempt to run another user program would be made only if it was al-
ready in core or could be brought to core in a time short compared with the expected
time-to-completion of the i/o operations of the suspended program, without interfering
with these operations.

9
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In a time sharing system, however, programs will often be suspended because they
have met the immediate requirements of the user, and it is therefore appropriate to
consider i/o operations requiring many milliseconds in order to find useful work.

An additional complication that timesharing adds to multiprogramming is that of
maintaining "turnaround time" at a level appropriate to each customer. Multiprogram-
ming operating systems for a batch-programmed system need only optimize processing
rate; they can do this by selecting a set of jobs from the job queue that tends to keep all
modules busy, although it has been observed that current-day operating systems are not
very sophisticated in their choice. In a timesharing system it may be necessary to allow
inefficient instantaneous states (i.e., not all modules busy) in order that each customer's
response time requirements may be met.

Synthesis

The discussions of this section may be summarized by observing that although there
are certain problems which in the strictest sense apply only to multiprogramming, these
problems must be resolved for efficient multiprocessing. Furthermore, timesharing
simply represents a particular class of problems that are appropriately performed on a
multiprogrammed multiprocessor.

Thus an efficient multiprocessor operating system will provide full multiprogram-
ming capability and will be able to accommodate timesharing applications as well as
conventional batch-processing and the real-time requirements of military and industrial
control systems.

CURRENT STATUS

Problems Nearly Solved

We now consider a number of problems in the design of multiprocessor operating
systems that were considered critical several years ago but which are now either solved
or on the threshold of solution.

It is no longer controversial that operating systems can be built that keep computer
modules from interfering with each other while permitting system throughput nearly as
many times greater than that obtained with a single computer module as there are com-
puter modules, provided that a large amount of core memory is available and there is a
statistical universe of problems to be processed.

When a multiprocessor is used to attempt to raise the throughput on a single prob-
lem, the potential gain may not be realized unless the programmer is careful to identify
potential parallel paths and bottlenecks. It would be fair to state that this has been ac-
complished in several systems programmed by NRL, although the insensitivity of current
compilers to these problems has made the work difficult by forcing programmers to keep
track of relationships which would ordinarily be handled by compilers. Nevertheless,
this problem can be classed as "nearly solved," since suitable compilers can be built to
imitate the clever programmer whenever there is sufficient incentive to do so.

The problem of conflicting requests for i/o devices is in a similar state. The tech-
nique used in the AOSP, while workable, is not wholly satisfactory. This technique per-
mits programs to be exclusive or nonexclusive users of a device. A drum is an example
of a device that would normally have many nonexclusive users. On the other hand, a line
printer would normally have one exclusive user at a time to prevent the commingling of
outputs from several programs. The technique is not wholly satisfactory, because an
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exclusive user of a device remains so even while suspended, and a program also requir-
ing this device could not be run during this period of suspension. A better technique
which is being considered for incorporation within the AOSP, as well as being planned
for several more modern operating systems, is to further decouple the user programs
from i/o by making their macro calls to the operating system refer not to physical peri-
pherals but rather to "logical devices," i.e., buffers which the operating system can un-
load to the physical peripherals.

Perhaps the most difficult problem, one that can still be fairly classed as "almost
solved," is that of memory allocation and protection. Current multiprogramming oper-
ating systems work well, provided that a large amount of memory is available. While
the original motivation of multiprogramming was to keep computers busy, in a modern
system the cost of core memories may exceed the cost of computer modules, making
efficient use of memory a requirement. Furthermore, if it is desired to accommodate
undebugged programs in the system and allow them full system resources (e.g., not in-
sist that they be run interpretively), it is necessary to protect the system and the other
users from undebugged programs.

Again the AN/GYK-3(V) will be used as an example of current art. The AOSP keeps
track of available blocks of memory in a size-ordered linked-list. When it allocates a
program it selects and loads the smallest blocks of sufficient size that accommodate the
PA and the DA. It inspects the declarations of external objects and, if an object is de-
clared as "necessary" and is already in core, loads the absolute address of that object in
an ABI (Adaptor Block Item) Line of the program being allocated and increments the user
count of the object. If an object is not in core, it loads it (and its necessities), fills in
the ABI Line, and sets the user count to one. When all necessary objects are linked, the
AOSP loads an upper and lower memory bounds register with the upper and lower limit
address of the program and its dependent objects, and loads the location of the PA and
the DA into the BPR (Base Program Register) and BAR (Base Address Register), respec-
tively, of an available computer module.

The program can read and write in its DO's and in the DA's of linked programs by
indirect addressing through the ABI Lines. Similarly, it can call a linked SS by an indi-
rect subroutine jump through an ABI Line. Finally, it can call a linked program, by an
indirect jump through an ABI Line, to the new program which will employ a "starter
patch" to reset the BAR and BPR.

An external object can also be declared as "conditional," in which case allocation
will not be attempted until the program executes a "find" macro call on the AOSP. Simi-
larly, a program can execute a "release" macro call on the AOSP, in this case the ABI
Line will be modified to prevent subsequent use, the user count on the external object
will be decremented by one, and, if it thus reaches zero, the object will be released, i.e.,
the space it occupies will be relinked into the available space map. Once allocated, an
object is never moved as long as it has a nonzero user count, i.e., no attempt is made at
dynamic reallocation.

ABI Lines are also declared for i/o devices and at allocation time are filled in with
the absolute address of that portion of the i/o control package which controls that partic-
ular device.

The AOSP has proved quite workable and succeeds in optimizing memory utilization.
It accomplishes this by not insisting upon consecutive blocks of memory for each of the
many objects involved in a job and by assigning each object to the smallest available block
of memory that will contain it. It further permits objects to be shared by many jobs to
the extent that their nature permits. Nevertheless, some penalties have been suffered in
order to achieve efficient memory utilization.
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The first problem is the indirect addressing involved in communicating with DO's.
This indirect addressing is required by the independent allocation of the DO and costs an
extra memory cycle time per reference.

The second problem is the lack of full memory protection. The memory protection
registers span a continuous block of core, but since the objects of a job are independ-
ently allocated, they will not in general be contiguously located. Thus the memory pro-
tection limits will allow writing not only in the job being executed but also in objects
belonging to other jobs which happen to lie between the limits. Furthermore, the ABI
Lines themselves are not protected.

The third problem is that of memory fracturing. It is possible that, if the system
operates for a long time readying and releasing objects of varying length, the available
memory may become fractured into a large number of very small blocks any one of which
is too small to contain the larger objects of a new job. While this phenomena has been
only a minor annoyance in the NRL work, military systems usually involve considerable
readying and releasing of the same objects which tend to get allocated to the same place
(a block of space which fits them exactly), and in a "job-shop" application fracturing
might be a real problem.

Nevertheless, these problems are classed as "almost solved," since new computer
designs have met them head-on. To remove the indirect addressing penalty, the IBM
System 360 Computer (19) employs a number of base registers in lieu of the pair (BAR
and BPR) provided in the AN/GYK-3(V). The base registers then replace the ABI lines.
While the solution is not wholly satisfactory considering that the use of base registers
for this purpose reduces their use as index registers (indeed the multiple indexing facility
of the AN/GYK-3(V) could have been used for this purpose if we had been willing to sac-
rifice one of the three subscripts), it does represent an improvement because 16 memory
protect "keys" are provided. Thus, memory protection of other objects allocated between
objects of the current job is possible.

The modifications of the General Electric Co. GE-635 for Project Mac and for Bell
Telephone Laboratories (6) involve the use of hardware "attachment" registers, each
involving a base address and memory protection limits. An associative memory is used
to mediate between the limited number of hardware registers (8) and the potentially un-
limited number of "ABI Lines" in amanner analogous to the suggestion of Conway (7).
An almost identical system has been proposed by IBM for multiprocessor modifications
of the System 360 computer (19).

The memory fracturing problem is generally being attacked through "paging." For
example, in the CDC-3870 (31) the memory is treated as if it were organized as a set of
pages. The page length is variable, but for the sake of illustration assume that it is fixed
at 512 words. Under this assumption the lowest nine bits of an effective address may be
considered as a word number (line number) within a page and the upper bits as a page
address. An auxiliary allocation memory translates the page numbers appearing in the
program (logical page numbers) into hardware page addresses (physical page numbers).
Thus, while an object occupies a continuous block of memory as far as the programmer
is concerned, it can be allocated into nonconsecutive physical pages, provided the alloca-
tion memory is suitably loaded. External objects can be referenced by assigning them
distinct logical page numbers and suitably loading the allocation memory. While a job is
running, the structure of the job is shown in the allocation memory; unallocated logical
page numbers are made to refer to trapping routines. Thus the fracturing, memory pro-
tection, and external reference problem are solved with one technique, although at the
expense of some wasted core, presumably one-half page per object.

Dynamic reallocation is another solution to the fracturing problem. For example, in
the otherwise unambitious operating system for the GE-625 (user programs cannot share
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objects external to the fixed-location operating system) dynamic reallocation is practiced
(20). It should be noted, however, that such reallocation is much more difficult in a mul-
tiprocessor system or even in a multiprogrammed system allowing shared objects; no
plans to accomplish dynamic reallocation in the more stringent environments have been
announced.

The purpose of this discussion has been to justify a number of simplifying assump-
tions that will be made about multiprocessors and their operating systems. We assume
that the main core memory of a multiprocessor consists of a number of independent,
asynchronous, identical banks, each characterized by two parameters: size and access
time.

We assume that the computer modules can be characterized by a mean instruction
rate that does not depend on whether the data handled is in the executed program or an
external object. We assume a small but finite processing requirement to switch the at-
tention of a computer module from one job to another; this requirement is to be a func-
tion of the number of external objects and the existence in core of the program and the
external objects. We also assume that i/o requirements never conflict except on a total
demand for i/o channels or peripheral device basis.

Unsolved Problems

Under the assumptions just given, and under the assumption that the "mechanical"
problems in writing an operating system are soluble, the major unsolved problem is
specifying the strategies an operating system should employ in deciding which program
to allocate and run from a population of run requests. Fortunately, the lack of work on
this problem has not prevented the development of multiprocessor hardware or operating
systems, although it would seem that the same economic considerations that have led to
interest in multiprocessors in nonmilitary applications should have motivated consider-
able effort toward the optimization of operating systems. Although Conway (7) has opined
that "parallel processing is not so mysterious a concept as the dearth of algorithms
which specifically use it might suggest," there exist no general results which give reli-
able guidance to a programmer in his specification of parallelism within his own pro-
gram; there exist no operating systems that use more than the crudest heuristics in
deciding which program to allocate.

Let us trace the progress of a program through a multiprocessing system in an at-
tempt to highlight some of the decisions that must be made by the operating system. The
operating system is first informed of the existence of input media loaded in some input
device (e.g., a deck of cards placed in the input hopper of a card reader) and presumably
at its first opportunity reads in the information, transfers the bulk of it (e.g., programs,
data) to some bulk storage device, and retains certain information (run-request parame-
ters, declarations of external objects, etc.) within its own DA's or DO's. From this time,
until the initiation of the job, certain costs are accruing. The first is the occupancy of
the bulk storage device, a cost that may be small in comparison with core occupancy but
which may not be negligible. The second cost involves the residence of the run request
information within the operating system itself, a residence which probably must be main-
tained in core. The third cost is in the processor time used to consider this information
each time the scheduling algorithm is run. The fourth, and possibly the most significant
cost, is the cost to the user of the delay in the initiation of his program. This cost is a
nonlinear function of time and is usually not stated by all users in a consistent measure.

Two major problems for the operating system are deciding how often to run the
scheduling algorithm and how extensive each run should be. Frequent running implies a
considerable processor load; infrequent running risks inefficiency in the use of system
resources. It is possible that a distinction should be made between scheduling between
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"hot jobs," which are those in core or in the process of being brought to core, and "cold
jobs," which are uninitiated run requests, although in the implementation of the AOSP
this distinction was dropped. The scheduling of computer modules among hot jobs is a
relatively simple matter - if real-time requirements are momentarily neglected - as
there is no reason to schedule unless a hot job relinquishes one or more computer mod-
ules for some internal reason (e.g., a wait for i/o, a wait for linkage to an external
object requiring i/o operations to ready it, the termination of parallel execution path(s),
or a programmed delay) or unless the operating system becomes aware of a condition
that might recommend the resumption of a suspended hot job [(e.g., the completion of an
i/o operation, the availability of an i/o device (or the buffer area equated to it), the com-
pletion of a delay, or the termination of a program and the consequent release of core
which could be allocated to another program previously suspended because a request for
additional core space could not be honored)].

The cold job scheduling problem is considerably more difficult, but the desirability
of maintaining the distinction between hot and cold jobs may be seen by considering the
problems encountered in the AOSP where the distinction is not maintained. Responder,
the program that honors run requests, has highest system priority. For each run re-
quest it creates a "job table" describing the run request which resides in core within the
AOSP. This job table has associated with it responder's pre-emptive priority which can-
not be lowered until the job is initiated, so readying the job takes place. Readying usually
involves bringing the program into core, linking it to the job table and to the declared
necessary external objects, and bringing the latter into core if not already there. If the
total of run requests exceeds the system core space, the lowest priority job(s) will be
terminated; these jobs are the ones in progress, and that progress will be lost.

Although the situation could be improved by giving the process of readying a job the
job's intrinsic priority rather than AOSP's pre-emptive priority, making it tempting to
relegate the problem to the class of "mechanical" problems, there is a more fundamental
difficulty. The decision to convert run requests into hot jobs immediately, was motivated
not solely by the inability to find an algorithm to decide when the conversion should take
place but to some extent by the desire to keep core full of hot jobs to occupy computer
modules when their current job was suspended, awaiting i/o. Obviously, if a computer is
expected to be free only for the length of time required to complete an i/o operation, it
makes little sense to try to ready a new job to occupy that computer module if the ready-
ing also involves i/o. However, this argument neglects the fact that core requirements
of running jobs fluctuate radically if the user programmers have conformed to the spirit
of multiprogramming and request external objects only when actually needed. Thus, if
the operating system packs the core with jobs and a running program requests the oper-
ating system to find and ready an external object, the running program will be terminated
if its intrinsic priority is low, or else a job previously readied will be terminated and the
labor expended in readying it will have been wasted. It has been suggested that this prob-
lem could be ameliorated by not terminating jobs when a core crisis occurs but instead
rolling them out to bulk storage. This would be rather difficult in the AN/GYK-3(V),
since the entire job structure would have to be restored to the same absolute locations,
but it might be feasible in planned future systems employing paging and/or associative
memories to circumvent the difficulties of dynamic reallocation. Nevertheless, there
are costs in processor and i/o channel time in roll-out and roll-in. The fundamental
problem is that the analysis has never been performed to develop algorithms which could
be used to resolve the conflicting desires, keeping core space available to accommodate
the dynamic space requirements of hot jobs, and filling core with jobs to minimize the
probability of an idle computer module.

As previously suggested, once the job is running, scheduling is easier and mostly
mechanical if real-time requirements are ignored. One problem remaining is the devel-
opment of a "running" priority as distinguished from the intrinsic job priority. Consider
two readied jobs denoted by A and B with A having higher intrinsic priority and starting
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first. In this discussion assume that only one computer module is available (e.g., all
other modules are executing still higher priority jobs). Suppose that A suspends itself
for some reason such as awaiting i/o in connection with a slow device; B will now begin
running. The interrupt at i/o complete time will invoke the scheduler, which must decide
whether to resume A or continue B. In the AOSP this decision is made solely on the
basis of job priority; thus in this case A will be resumed and B suspended because of the
higher priority associated with A. But these priorities are simply the intrinsic job
priorities; in the AOSP they are fixed, whereas in more elegant proposed systems they
increase with time. In the most ambitious system imaginable, the priority would vary
(generally in a nondecreasing fashion) to reflect the marginal cost of another delay of
one time unit in the initiation of the program. It is believed that this intrinsic priority,
while suitable for consideration in the loading and readying scheduler (along with core
state and other variables), is inappropriate for determining the resumption of programs.
For this purpose it should be replaced by a running priority which reflects the cost of
keeping the hot job in a suspended state. Suppose that in the execution of B a very large
structure of dependent external Qbjects has been created and that B is near completion.
It would then seem more sensible to continue B and free this space rather than to resume
A and have little space available to the allocator.

It is realized that formidable difficulties exist, both in the extraction of the neces-
sary parameters to calculate such a running priority and in the calculation itself, but
attention to this problem is considered overdue.

Further complications ensue when consideration is given to real-time systems which
may be defined, in analogy with Patrick, as systems containing programs whose marginal
cost of delay contain delta functions. In a strict real-time system the requirements of
all such programs must be met, even at the expense of seriously delaying service to the
non-real-time users.

An intermediate situation arises in timeshared systems where the user is human,
and in some systems where the user is a machine tool which will suspend work (and not
damage the piece being worked), if computer service is suspended. In these situations
intrinsic priority cannot be completely ignored in the calculation of running priority;
serious consideration must be given to roll-out schemes, since the accrued cost during
a roll-out roll-back cycle may well be tolerable. The situation is made more complex
by the existence of "background" problems which have a low and relatively time-invariant
intrinsic priority. The operating system must decide whether to commit resources (par-
ticularly core memory) in order to make progress on the background problems, or to
leave resources idle to prevent serious delays in honoring resource request from those
programs having some of the aspects of real-time jobs.

SUGGESTED ATTACKS

Analytic

An obvious approach toward the solution of these problems is through mathematical
analysis. It must be recognized that analysis would have to depend heavily on probability
theory, and that results would be in terms of expectation values. The various inputs
would have to be modeled with enough detail to render the results meaningful, but could
not be so specific that the range of applicability would be too narrow.

One could not hope to make an analysis that was completely hardware independent;
indeed, the investigation should allow for the consideration of reallocation of the hard-
ware budget among the modules for optimum response to a given distribution of comput-
ing requirements. Fortunately, enough production experience exists on the AN/GYK-3(V)
to estimate the costs of various modules of differing capabilities. Production cost is
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emphasized here because the various modules of a commercial product line are mar-
keted at widely differing multiples of their production costs for reasons of competitive
strategy.

The basic parameters characterizing a multiprocessor are the number of computer
modules, memory modules, i/o modules, and the size, random access time, and transfer
rate of bulk memory. All modules can be assumed asynchronous, and all modules of a
given type can be assumed identical without serious loss of generality.

For the purposes of this study, computer modules will be described by only two
parameters: a mean instruction execution rate, and the time required to transfer con-
trol of the computer module from one job to another. Loading of memory by a computer
module can be deduced from the mean instruction execution rate and the memory module
characteristics.

Memory modules are characterized by size and cycle time. It is not clear at this
time whether it would also be necessary to distinguish between cycle time and read
access time. Paging, allocation memory times, and the like would be charged to the
computer module instruction execution rate.

No quantitative characterization of the i/o modules would be required. It would be
assumed that each module would be capable of driving any peripheral device or portion
of bulk memory on a one-device-at-a-time basis at any rate up to the limitation imposed
by memory cycle time and that each module would tie up its associated memory for only
the time required to exchange information one word at a time.

Modeling the work load would be expected to be much more difficult than modeling
the hardware. It must be emphasized that each of the parameters detailed below must be
described by a probability distribution rather than a deterministic value. To maintain
this emphasis, the random deviates will be underlined.

Each type of job in the many types characterizing the workload has an associated
arrival rate and arrival time. Each job has associated with it a preprocessing load and
a bulk memory occupancy. Each job has an intrinsic priority which, it may be recalled,
was associated with the time-varying marginal cost of delay in initiation. Once initiated,
the job is characterized by its core occupancy, number of parallel paths, rates and nature
of macro calls referring to external objects, and i/o requirements, as well as the total
number of instructions to be executed. It must be emphasized that the statistics of these
parameters may not be stationary but may also vary as execution progresses. After ini-
tiation a job has, in principle, a calculable running priority based on its interactions with
other jobs, but in the case of real-time jobs and time-sharing jobs approximating real-
time criteria, there may also be an associated intrinsic running priority.

Finally, in addition to evaluating all the costs associated with delays and attempting
to minimize them, either on a total basis or perhaps with some constraints on the maxi-
mum delay costs that may be accrued on any job, the counterbalancing "profits" repre-
sented by progress on background problem(s) must be evaluated.

The literature is not rich in this type of analysis. The best example may be found in
the considerations of Aoki, Estring, and Mandell (3). They considered the case of two
computers assigned to perform a bivariate interpolation in which each computer was re-
quired to await the completion of the previous computation cycle of the other computer
before proceeding. It may be worthwhile to quote extensively from Kleinrock's review
(17) of this paper:

"The principal result ... shows that for a distribution of computation time which
is uniform over some interval the performance depends directly upon the ratio
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a/m of the distribution's standard deviation to its mean. This is a rather in-
teresting and simple result; it must be recognized that it is applicable only to
the specialized models of parallel computation considered in the paper. The
performance measure R is defined as the ratio of expected computation time
for the two-processor system to the expected time for a single-processor sys-
tem. ... Their results show that R is bounded from below by 1/2 and that this
lower bound may be achieved when a/m = 0. ... Indeed, for such systems it
may be shown that 1/2 < R ' 1 since at worst one of the two processors is
always idle (giving R = 1), and at best both processors are always busy (giving
R = 1/2).?

Another example of analytic investigation is given in (9).

It is necessary to determine the extent to which the results of queueing theory are
applicable to this problem. Indeed, Kleinrock (17) suggested in his review that "It would
be interesting to consider the analogies between the models presented in this paper and
certain models of queueing theory, in particular, cyclic queueing models."

One of the most elementary examples of queueing theory, so elementary that Takacs
(32) quotes it in the introduction of his book, is the result of the "bus stop" problem.

"Suppose that at a given stop buses are arriving in accordance with a homo-
geneous recurrent process. The inter-arrival times have the distribution func-
tion F(x) and : is the average inter-arrival time. What is the average waiting
time of a passenger arriving at time t at the stop?

"The answer usually given is /2. But this is so only if buses run at
exactly -time intervals. The average waiting time depends on the variance
of the inter-arrival times. The right answer is

a,2

2 +2

where a,32 is the variance of the inter-arrival time."

The analogy between this result and Aoki's

R = 1 + Ka
2 m

is suggestive of the applicability of queueing theory to the multiprocessor problem.

On the other hand, we must note the caution given in the Aoki (3) paper that

". . . past analyses dealt mostly with queueing problems with a single server.
Aside from a rather straightforward extension of queueing analyses with mul-
tiple (and perhaps heterogeneous) servers, systems with multiple processing
units have produced an entirely new kind of problem in which the processors
work interdependently."

Two investigators have followed this trail with some success. Fife and Rosenberg
(11) have used a queueing model to predict the response delay characteristics of a time-
shared system. Weingarten (35) used a queueing model to analyze memory loading in a
store-and-forward message-switching system. It must be noted that the queueing models
yield delays to various requesters but do not in themselves suggest how to minimize costs
which are nonlinear, time-variant functions of these delays.
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Monte-Carlo Approach

The relatively low yield of analytically derived results in comparison to the labor
expended raises the possibility of using Monte-Carlo techniques programmed on a digital
computer. It should be realized that the difficult model-making job is not ameliorated by
this approach; only the actual calculation of performance effectiveness (be it Aoki's "R"
or the total accrued delay costs suggested earlier) is simplified.

There are two compelling objections to the Monte-Carlo approach. The first is that
any result applies only to the parameters selected for the run, and considerable experi-
mentation would be required tosidentify critical parameters and their values which yield
optimum performance. Analytic results, on the other hand, are amenable to conventional
maximization techniques. The other objection concerns the labor involved in program-
ming the simulated operating system. Stone (31) has estimated that 40 man-years are
required to develop a modern multiprocessor operating system. While most of this
would be devoted to i/o control packages, memory allocators, etc., which would not have
to be simulated, a substantial portion is attributable to the scheduling algorithms, which
are central to the proposed investigation.

Fortunately, it is not necessary to decide at this time whether Monte-Carlo tech-
niques will be employed as the first stage of the investigation - modeling the hardware
and the problem mix would be substantially the same under either approach.

SPECIFIC PLANS

The previous discussion has outlined goals and problem areas in the study of multi-
processor operating systems and has suggested a number of possible approaches. It now
remains to present the specific plans for the research contemplated. These plans have
been based on-the desire to obtain some results of general interest while remaining within
the scope of a thesis investigation. *

This presentation will be generally limited to the analytic phase of the investigation.
At any point where the analytic difficulties become too formidable, the choice will have
to be made between abandoning that particular line of attack or continuing with simulation
and Monte-Carlo analysis.

The general goal is to devise means of evaluating the effectiveness of a hardware-
software combination on a problem mix. From this, and from estimates of the marginal
cost of adding hardware or software capabilities, the optimum combination for a given
problem mix can be deduced. Such a study implies that assumptions will have to be made
about (a) a measure of system effectiveness, (b) the nature and statistics of the problem
mix, (c) the hardware options available and their relative cost, (d) the levels of software
capability available and their relative cost, and (e) reasonable software strategies avail-
able within each capability level. It will be seen that there are interactions between the
assumptions and that not all combinations of options are meaningful. Let us therefore
start with an assumption concerning the nature of the problem mix and explore some
possible associated measures and capability levels.

Assume an infinite well of jobs of zero priority, i.e., no costs associated with delays
in the initiation or completion of the jobs, and that the possibility that a given job may
never be completed carries no penalty. Under this assumption a reasonable definition of
productivity is: processor time devoted to the execution of problems as distinguished
from executions of operating system routines or idle processor time. One difficulty with

*See footnote on page 1.
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this definition is that it makes no allowance for input or output volume. Consider two
jobs requiring equal amounts of processor time where only one produces a substantial
amount of output. The output-limited job requires more system resources than the other,
not only in i/o equipment and channels but also in memory occupancy. If processor time
is the only measure of productivity, no credit has been given for the extra resource
utilization of the output-limited job.

One may escape this dilemma by assuming that the jobs are drawn at random from a
statistically homogeneous population, with the specific characteristics of a job unveiled
during its solution. Since the operating system would not be permitted to preselect the
jobs, it would be proper, in an average sense, to give equal credit to each completed job
even though their solution difficulty would be quite unequal. Under this argument the
mean solution rate would be a just measure of productivity. Care must be taken, how-
ever, to assure that the unveiling of parameters does- not occur too early in each prob-
lem, or else the operating system would be tempted to abandon difficult problems early
and spuriously appear to raise productivity by concentrating on easy jobs. For this rea-
son some search for safer measures of productivity would seem worthwhile.

The important parameters of each job are- memory requirements, computational
requirements, and i/o requirements. Two models for generating these parameters will
now be described. The first represents as simple a model as would be useful to analyze,
and the second represents as complex a model as it seems practical to analyze. In both
models the total memory size M is a parameter of the analysis. It may be necessary to
terminate the analysis at some level of complexity intermediate to the two extremes.

Simplest Model: All jobs have a memory requirement consisting of three
components, m, x, and y. Component m, which is assumed to be the same for
all jobs, represents driver programs and data which must be present for the
entire job from initiation to completion, irrespective of whether the job is ac-
tually running. Each job consists of the same number n of segments. In order
for a segment to be run, additional memory x + y must be temporarily allocated.
Component x, which represents additional program and scratch, is assumed
constant for all segments of all jobs, but component y, which represents space
for output, is a random variable. Each segment requires one unit of time of one
processor for execution, after which memory space x can be released. Output
is presumed to occur at rate r; thus y must be retained for an additional y/r
units of time. The memory requirements of an allocated job are, therefore,
m+x+y for one unit of time while the segment is being processed, m+y for
y/r units of time during output, and m for a variable time until the next seg-
ment is initiated.

Complex Model: Jobs are characterized by the same parameters, but m,
x, and n become random variables. The value of n for a specific job is not
known until job completion; i.e., at the end of the ith segment there is some
probability of another segment being required. This probability may be a
function of i but is otherwise constant over the jobs. At the end of each seg-
ment there may be a delay in commencing output, since the number of output
channels no will be limited. The operating system will be permitted to start
the execution of the (i + l)th segment before output of the ith is complete pro-
vided that memory is simultaneously allocated for yi, xi+,, and y i+,

Obviously, the results will depend on the form of statistical distribution chosen. It
is proposed to use exponential distributions initially but to consider other distributions
as well.

Still retaining our assumptions concerning problem-mix nature and measure of ef-
fectiveness, we must now explore operating systems which can be characterized by both
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their mechanical capabilities and their strategic principles. By mechanical capabilities
are meant features that intuitively seem desirable, but which are not always implemented
in operating systems, to deal with resource requirement conflicts. By strategic princi-
ples are meant the rules by which the operating system decides which of these capabili-
ties to employ.

The levels of mechanical capability that would be considered are:

1. In case of memory conflict, requester is terminated, the space previ-
ously occupied is freed, and all past work on requester is wasted.

2. In case of memory conflict, requester is suspended, the memory space
occupied just before the request must continue to be allocated to requester, and
an attempt will be made to grant the conflicting request each time some other
program releases memory space.

3. In case of memory conflict, either the requesting program or some other
suspended program can be rolled out to bulk storage (subject to channel avail-
ability delays at a rate r') and can be brought back at a later time.

4. At output time the operating system has the option (subject to channel
availability delays) of outputting at the device rate r or to bulk storage at a
rate r', intending at some later time to reallocate memory space yi, to input
from bulk storage at rate r, and to output to the device at rate r.

In defense of the assumed range of mechanical capabilities it may be stated that: the
AOSP, as originally delivered, functioned substantially at level 1 (although running pro-
grams rather than the requester might be terminated in accordance with job priority),
was modified as a result of NRL experience to level 2, and may have the features of lev-
els 3 and 4 added in the future. These latter capabilities have been proposed for the op-
erating systems of most new computers.

The spectrum of strategies to be considered varies with the assumed level of me-
chanical capability. At level 1 the only decision required of the operating system is when
to start programs. Two simple strategies seem worth investigating: to attempt to keep
the number of jobs in core constant, and to keep the amount of core allocated constant,
i.e., to load a new job whenever core usage falls below a certain level. At the higher
capability levels various algorithms will have to be devised and investigated to determine
when roll-out and roll-back should be performed, what should be rolled out, and how the
output queue on bulk storage should be handled.

The object of these analyses will be to develop expressions for productivity as a
function of problem statistics, hardware complement, operating system capabilities, and
operating system strategies. From these expressions the optimum strategy and associ-
ated productivity can be found for a given set of problem statistics, hardware comple-
ment, and operating system capabilities. This suggests two further calculations: assum-
ing a given cost relationship between different types of system modules, it should be
possible to find the optimum module mix and the associated operating system strategy
and productivity for a given combination of problem statistics and operating system ca-
pabilities; furthermore, for given problem statistics it should be possible to express the
value of an increment in operating system capabilities either in terms of increased
productivity or in terms of the reduction in hardware complement possible while main-
taining constant productivity.

It should be recalled that the discussion thus far has pertained to the simple model
of an infinite well of jobs of zero priority. A contrasting model would assume a problem
arrival rate sufficiently low that the system would be capable of solving all of them. Un-
der this assumption a reasonable goal for the operating system is to minimize total delay
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costs. These costs are, in general, a function of the time delay between the arrival of a
problem in the system and the completion of its solution.

The simplest delay cost function would be linear in time and identical for each job;
hence the simple sum of all delays would be the parameter to be minimized. It is not
known whether more complex delay cost functions could be considered without resorting
to simulation. It should be observed that because of the nonobjective standards a system
user is likely to apply to his work, more complex functions could not be equitably applied
to a job-shop problem mix, although realistic nonlinearities could be devised for certain
numerical control applications.

Under the new assumption regarding the nature of the problem mix and the resultant
new measure of productivity, we must now reexamine our assumptions concerning
problem-mix statistics and the operating system capabilities and strategies.

The "simplest model" can probably be used unchanged, but the "complex model"
would require some modifications. The principle that values of statistically distributed
parameters are unveiled as late as possible was required to allow the measure of effec-
tiveness to be meaningful, where the measure of effectiveness was applicable to the old
assumption about problem mix. Under the new assumptions a better model might be -

Complex Model: Jobs are characterized by n, m, x, and y as before. The
system is characterized by M, no, and r as before. However, the values of n
and m are declared in advance for each job. Furthermore, x and y, while ran-
dom variables, are drawn from distributions declared in advance for each job.
The range of operating system capabilities listed earlier for the other problem-mix

and associated productivity measure could be used unchanged, but more complex operat-
ing system strategies would have to be devised and evaluated to take advantage of the
information available about the resource requirements of each job.

Still another variation would be to assume given statistics of jobs and their arrival
rate and to find the minimum cost hardware complement that yields a given total delay
cost at various levels of operating system capabilities. As in the first model, the value
of various levels of operating system capability could be expressed in terms of possible
reductions in hardware complement that maintain the given total delay cost.

Throughout the investigation attention will be directed to the determination of the
sensitivity of solutions to the form and parameters of the distribution of statistical
variables. Practical application of the work envisaged would depend on the identification
of parameters which can be reasonably well estimated for real-life problem mixes and
which determine optimum strategies and hardware complements.

CONCLUSIONS

It is concluded that the multiprogrammed multiprocessor has an important future for
both conventional computing loads and for time-shared applications. The hardware prob-
lems in the construction of such multiprocessing systems have been solved, and the
mechanical software problems of building workable operating systems have been solved.
Additional problems in the area of memory allocation and protection are on the brink of
solution. There is, however, a broad, relatively uninvestigated area in the optimization
of hardware complements and operating system strategies that deserves analytic attention.

The principle problems include: job-loading strategies, job-suspension, -termination,
and -roll-out strategies, the value of roll-out schemes and bulk-memory-buffered i/o,
and the optimum hardware mix for a given problem mix.

While the analytic difficulties appear formidable, and models yielding useful results
are expected to be more restrictive than desired, investigation of these and related
problems appears overdue and potentially fruitful.
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